Concepto de circuito de entrenamiento.
Consiste en realizar una serie de ejercicios ordenado de manera que conforman una circuito en los cuales se realizan una serie de ejercicios de diferentes efectos con o sin implementos que se denomina estaciones. El profesor va indicando las diferentes rotaciones por los aparatos. En el año 1953 los Ingleses Morgan y Anderson desarrollaron en la universidad de Sud (Inglaterra) un sistema de entrenamiento el que deacuerdo con su estructura formal denominaron Circuí Training (entrenamiento en circuito).Tipos de circuitos:
- Circuito abierto: Es el circuito donde se le indican a los integrantes la forma en la que se va a realizar el ejercicio, el atleta realiza el ejercicio de acuerdo con sus condiciones físicas.
- Circuito cerrado: Se considera este porque el profesor decide la forma de trabajos para ejecutar los ejercicios.
- Circuito mixto: Es la combinación de los anteriores en la que las estaciones unas son abiertas y otras son cerradas.
Características del circuito:
1.- Trabajar en mayor número de alumnos.
2.- Los trabajos de estación son consecutivo y ordenado en forma lógica.
3.- Se puede graduar la clasificación en forma individual.
4.- Respeta las diferencias individuales.
5.- Se realiza en forma de circuito.
6.- Se puede trabajar con poco espacio.
7.- Los ejercicios.
Es tan común la aplicación del circuito eléctrico en nuestros días que tal vez no le damos la importancia que tiene. El automóvil, la televisión, la radio, el teléfono, la aspiradora, las computadoras y videocaseteras, entre muchos y otros son aparatos que requieren para su funcionamiento, de circuitos eléctricos simples, combinados y complejos. (Ver: Historia del circuito eléctrico)
Pero ¿qué es un circuito eléctrico? Se denomina así el camino que recorre una corriente eléctrica. Este recorrido se inicia en una de las terminales de una pila, pasa a través de un conducto eléctrico (cable de cobre), llega a una resistencia (foco), que consume parte de la energía eléctrica; continúa después por el conducto, llega a un interruptor y regresa a la otra terminal de la pila.
Los elementos básicos de un circuito eléctrico son: Un generador de corriente eléctrica, en este caso una pila; los conductores (cables o alambre), que llevan a corriente a una resistencia foco y posteriormente al interruptor, que es un dispositivo de control.
Todo circuito eléctrico requiere, para su funcionamiento, de una fuente de energía, en este caso, de una corriente eléctrica.
¿Qué es la corriente eléctrica? Recibe este nombre el movimiento de cargas eléctricas (electrones) a través de un conducto; es decir, que la corriente eléctrica es un flujo de electrones.
¿Qué es un interruptor o apagador? No es más que un dispositivo de control, que permite o impide el paso de la corriente eléctrica a través de un circuito, si éste está cerrado y que, cuando no lo hace, está abierto.
Existen otros dispositivos llamados fusibles, que pueden ser de diferentes tipos y capacidades. ¿Qué es un fusible? Es un dispositivo de protección tanto para ti como para el circuito eléctrico.
Sabemos que la energía eléctrica se puede transformar en energía calorífica. Hagamos una analogía, cuando hace ejercicio, tu cuerpo está en movimiento y empiezas a sudar, como consecuencia de que está sobrecalentado. Algo similar sucede con los conductores cuando circula por ellos una corriente eléctrica (movimiento de electrones) y el circuito se sobrecalienta. Esto puede ser producto de un corto circuito, que es registrado por el fusible y ocasiona que se queme o funda el listón que está dentro de el, abriendo el circuito, es decir impidiendo el paso de corriente para protegerte a ti y a la instalación.
Recuerda que cada circuito presenta Características Particulares. Obsérvalas, compáralas y obtén conclusiones sobre los circuitos eléctricos.
Los circuitos eléctricos pueden estar conectados en serie, en paralelo y de manera mixta, que es una combinación de estos dos últimos.
ELECTRICIDAD
La electricidad (del griego ήλεκτρον elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros[1] ,[2] [3] [4] en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.[5] Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.
La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.[6]
La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM).[7]
Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental.
[editar] Historia de la electricidad
Configuración electrónica del átomo de cobre. Sus propiedades conductoras se deben a la facilidad de circulación que tiene su electrón más exterior (4s).
Mientras la electricidad era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno fueron hechas en los siglos XVII y XVIII por investigadores sistemáticos como Gilbert, von Guericke, Henry Cavendish, Du Fay, van Musschenbroek y Watson. Estas observaciones empiezan a dar sus frutos con Galvani, Volta, Coulomb y Franklin, y, ya a comienzos del siglo XIX, con Ampère, Faraday y Ohm. No obstante, el desarrollo de una teoría que unificara la electricidad con el magnetismo como dos manifestaciones de un mismo fenómeno no se alcanzó hasta la formulación de las ecuaciones de Maxwell (1861-1865).
Los desarrollos tecnológicos que produjeron la primera revolución industrial no hicieron uso de la electricidad. Su primera aplicación práctica generalizada fue el telégrafo eléctrico de Samuel Morse (1833), que revolucionó las telecomunicaciones. La generación masiva de electricidad comenzó cuando, a fines del siglo XIX, se extendió la iluminación eléctrica de las calles y las casas. La creciente sucesión de aplicaciones que esta disponibilidad produjo hizo de la electricidad una de las principales fuerzas motrices de la segunda revolución industrial. Más que de grandes teóricos, como Lord Kelvin, fue éste el momento de grandes inventores como Gramme, Westinghouse, von Siemens y Alexander Graham Bell. Entre ellos destacaron Nikola Tesla y Thomas Alva Edison, cuya revolucionaria manera de entender la relación entre investigación y mercado capitalista convirtió la innovación tecnológica en una actividad industrial. Tesla, un inventor serbio-americano, descubrió el principio del campo magnético rotatorio en 1882, que es la base de la maquinaria de corriente alterna. También inventó el sistema de motores y generadores de corriente alterna polifásica que da energía a la sociedad moderna.
El alumbrado artificial modificó la duración y distribución horaria de las actividades individuales y sociales, de los procesos industriales, del transporte y de las telecomunicaciones. Lenin definió el socialismo como la suma de la electrificación y el poder de los soviets.[9] La sociedad de consumo que se creó en los países capitalistas dependió (y depende) en gran medida del uso doméstico de la electricidad.
El desarrollo de la mecánica cuántica durante la primera mitad del siglo XX sentó las bases para la comprensión del comportamiento de los electrones en los diferentes materiales. Estos saberes, combinados con las tecnologías desarrolladas para las transmisiones de radio, permitieron el desarrollo de la electrónica, que alcanzaría su auge con la invención del transistor. El perfeccionamiento, la miniaturización, el aumento de velocidad y la disminución de costo de las computadoras durante la segunda mitad del siglo XX fue posible gracias al buen conocimiento de las propiedades eléctricas de los materiales semiconductores. Esto fue esencial para la conformación de la sociedad de la información de la tercera revolución industrial, comparable en importancia con la generalización del uso de los automóviles.
Los problemas de almacenamiento de electricidad, su transporte a largas distancias y la autonomía de los aparatos móviles alimentados por electricidad todavía no han sido resueltos de forma eficiente. Asimismo, la multiplicación de todo tipo de aplicaciones prácticas de la electricidad ha sido —junto con la proliferación de los motores alimentados con destilados del petróleo— uno de los factores de la crisis energética de comienzos del siglo XXI. Esto ha planteado la necesidad de nuevas fuentes de energía, especialmente las renovables
MAGNITUDES ELECTRICAS
MAGNITUDES ELECTRICAS
APLICACIÓN A LOS CIRCUITOS EN SERIE Y PARALELO
CIRCUITO ÉLECTRICO | CIRCUITO SERIE | CIRCUITO PARALELO | ||
EJEMPLO | ||||
VOLTAJE (Voltios) | Si tenemos dos elementos conectados y uno de ellos tiene mayor carga negativa, decimos que tiene mayor voltaje o potencial. Los electrones que tiene de más se desplazarán a través de un conductor al elemento de menos potencial hasta que queden equilibrados. A la diferencia de carga entre ambos potenciales se le conoce con el nombre de Voltaje. | La diferencia de potencial o voltaje total es igual a la suma de las diferencias de potencial que crean todos los elementos del circuito. Esto es debido a que cada elemento está colocado a continuación del otro. | La diferencia de potencial o voltaje es igual en todas las ramas del circuito. Todos los elementos están conectados directamente a los polos del generador. | |
INTENSIDAD (Amperios) | La intensidad de corriente se define como la cantidad de carga "q" (en culombios) que pasa por un conductor por unidad de tiempo "t" (en segundos). | La intensidad es la misma en todo el circuito ya que atraviesa todos los elementos. | La intensidad total es igual a la suma de intensidades de cada una de las ramas del circuito. | |
RESISTENCIA (Ohmios) | La resistencia eléctrica es la mayor o menor capacidad que tiene un material para permitir el paso de la corriente. Depende de: su resistividad r , su longitud L y de su grosor S. | La resistencia equivalente del mismo es igual a la suma algebraica de cada una de las resistencias en serie del circuito. | La resistencia equivalente del mismo es igual a la suma inversa de cada una de las resistencias en paralelo del circuito. | |
RELACIÓN ENTRE MAGNITUDES: LEY DE OHM | La intensidad de corriente que recorre un circuito es directamente proporcional al voltaje, o diferencia de potencial aplicado. La constante de proporcionalidad es la resistencia del material conductor. |
No hay comentarios:
Publicar un comentario